
Compiladores
Capítulo da Aula 1: Apresentação e Iniciação

Prof. Aléssio Miranda Júnior
alessio@cefetmg.br

CEFET-MG - Campus Timóteo

Fevereiro de 2026

1 Objetivos
• Compreender o funcionamento e as regras da disciplina.

• Conhecer a bibliografia e ferramentas essenciais.

• Conectar a disciplina com conceitos de Estruturas de Dados, Teoria da Computação e
Linguagens de Programação.

2 Introdução
Bem-vindo ao curso de Compiladores. Esta disciplina é considerada por muitos como o
"divisor de águas" no curso de Ciência da Computação, pois ela integra conhecimentos de
Estruturas de Dados, Algoritmos, Arquitetura de Computadores e Teoria da Computação
em um único projeto prático.

3 Estrutura do Curso
O curso é dividido em dois pilares fundamentais que caminham em paralelo:

3.1 1. Fundamentação Teórica (60%)
Estudaremos os algoritmos e estruturas matemáticas que permitem a tradução de lingua-
gens.

• Léxico: Autômatos Finitos e Expressões Regulares.

• Sintático: Gramáticas Livres de Contexto e Autômatos de Pilha.

• Semântico: Sistemas de Tipos e Tabelas de Símbolos.

• Código: Grafos de Fluxo de Controle e Otimização.

Compiladores 1 Aléssio Júnior - alessiojr.com



3.2 2. Projeto Prático: O Compilador Mini-Pascal (40%)

3.2 2. Projeto Prático: O Compilador Mini-Pascal (40%)
Você não apenas estudará a teoria, mas construirá, do zero, um software capaz de ler
código fonte e gerar um executável real.

• Linguagem Fonte: Mini-Pascal (um subconjunto estrito de Pascal).

• Linguagem Alvo: Java Bytecode (para rodar na JVM).

• Ferramentas: Java 21, ANTLR4, ASM.

4 O Projeto Prático: Mini-Pascal
O projeto é desenvolvido incrementalmente ao longo do semestre. O objetivo é construir
um compilador para a linguagem Mini-Pascal, gerando Bytecode para a Java Virtual
Machine (JVM). As etapas são:

• Etapa 1: Infraestrutura e AST: Definição da hierarquia de classes que representará
o código em memória (Árvore Sintática Abstrata).

• Etapa 2: Analisador Léxico (Manual): Implementação de autômatos para quebrar
o texto em tokens.

• Etapa 3: Analisador Sintático (Manual): Implementação de um parser descen-
dente recursivo.

• Etapa 4: Ferramentas (ANTLR4): Substituição dos analisadores manuais por
geradores profissionais.

• Etapa 5: Semântica (Escopo): Validação de variáveis declaradas e resolução de
nomes.

• Etapa 6: Semântica (Tipos): Verificação de compatibilidade de tipos (ex: não
somar booleano com inteiro).

• Etapa 7: Geração de Código: Tradução da AST validada para instruções da JVM
usando a biblioteca ASM.

△ Importante

O projeto é incremental. Cada etapa depende do sucesso da anterior. O acúmulo
de atrasos pode inviabilizar a entrega final.

5 Conexões Interdisciplinares
Compiladores é a disciplina onde "tudo se encaixa".

Compiladores 2 Aléssio Júnior - alessiojr.com



5.1 Estruturas de Dados (AED2)

5.1 Estruturas de Dados (AED2)
O compilador é, essencialmente, um grande transformador de estruturas de dados.

• Árvores: A estrutura central do compilador é a AST (Abstract Syntax Tree).
Algoritmos de caminhamento em árvore (Depth-First Search, Post-Order Traversal)
são usados extensivamente para análise semântica e geração de código.

• Tabelas Hash: Fundamental para a Tabela de Símbolos, garantindo acesso O(1)
para buscar variáveis pelo nome.

• Grafos:

• Grafos de Fluxo de Controle (CFG): Usados para otimização e análise de cam-
inhos de execução.

• Grafos de Interferência: Usados no algoritmo de Coloração de Grafos para alo-
cação de registradores.

5.2 Linguagens de Programação
Para construir um compilador, você precisa entender profundamente como as linguagens
funcionam "por baixo do capô".

• Escopo e Visibilidade: Como funciona o sombreamento de variáveis? ({ int x; {
int x; } }). O compilador precisa gerenciar uma pilha de tabelas de símbolos para
resolver isso corretamente.

• Sistemas de Tipos: A diferença entre tipagem estática (verificada pelo compilador)
e dinâmica. Polimorfismo e coerção.

• Runtime Environment: Como a memória é organizada (Stack vs Heap) para suportar
chamadas de função e alocação dinâmica.

5.3 Linguagens Formais e Autômatos
A teoria da computação fornece as bases matemáticas para que nossos algoritmos sejam
corretos e eficientes.

• Expressões Regulares e Autômatos Finitos: São a base para a construção de
Scanners eficientes. Sem eles, escreveríamos "spaghetti code" cheio de if/else para ler
caracteres.

• Gramáticas Livres de Contexto (GLC): Essenciais para especificar a sintaxe es-
truturada (aninhamento de blocos e expressões). O parser é, na verdade, um Autômato
de Pilha determinístico.

Compiladores 3 Aléssio Júnior - alessiojr.com



6 Ferramentas de Trabalho
Neste curso, a familiaridade com as ferramentas é crucial:

• Git: Todo o trabalho será versionado. Commits atômicos e mensagens claras são
esperados.

• ANTLR4: Uma ferramenta poderosa que, a partir de uma gramática (.g4), gera todo
o código Java para ler e validar o código fonte.

• IntelliJ/VS Code: Use uma IDE robusta. O debug será seu melhor amigo.

7 Referências
• Aho, A. V., Lam, M. S., Sethi, R., & Ullman, J. D. (2006). Compilers: Principles,

Techniques, and Tools.

• Cooper, K., & Torczon, L. (2011). Engineering a Compiler.

Compiladores 4 Aléssio Júnior - alessiojr.com


	Sobre a disciplina
	Objetivos da disciplina

	Metodologia e avaliação
	Estrutura de avaliação

	O Projeto de Compilador
	Bibliografia e recursos
	Ferramentas


