Compiladores
Capitulo da Aula 1: Apresentacdo e Iniciacao

Prof. Aléssio Miranda Junior
alessio@cefetmg.br
CEFET-MG - Campus Timoéteo

Fevereiro de 2026

1 Objetivos

e Compreender o funcionamento e as regras da disciplina.
e Conhecer a bibliografia e ferramentas essenciais.

e Conectar a disciplina com conceitos de Estruturas de Dados, Teoria da Computacao e
Linguagens de Programacao.

2 Introducao

Bem-vindo ao curso de Compiladores. Esta disciplina é considerada por muitos como o
"divisor de dguas' no curso de Ciéncia da Computacao, pois ela integra conhecimentos de
Estruturas de Dados, Algoritmos, Arquitetura de Computadores e Teoria da Computacao
em um Unico projeto pratico.

3 Estrutura do Curso

O curso ¢ dividido em dois pilares fundamentais que caminham em paralelo:

3.1 1. Fundamentagao Tedrica (60%)

Estudaremos os algoritmos e estruturas matematicas que permitem a traducao de lingua-
gens.

e Léxico: Automatos Finitos e Expressoes Regulares.
e Sintatico: Gramaticas Livres de Contexto e Automatos de Pilha.
e Semantico: Sistemas de Tipos e Tabelas de Simbolos.

e Cddigo: Grafos de Fluxo de Controle e Otimizagao.

Compiladores 1 Aléssio Junior - alessiojr.com



3.2 2. Projeto Pratico: O Compilador Mini-Pascal (40%)

3.2 2. Projeto Pratico: O Compilador Mini-Pascal (40%)

Vocé nao apenas estudara a teoria, mas construira, do zero, um software capaz de ler
c6digo fonte e gerar um executavel real.

e Linguagem Fonte: Mini-Pascal (um subconjunto estrito de Pascal).
e Linguagem Alvo: Java Bytecode (para rodar na JVM).
e Ferramentas: Java 21, ANTLR4, ASM.

4 O Projeto Pratico: Mini-Pascal

O projeto ¢é desenvolvido incrementalmente ao longo do semestre. O objetivo é construir
um compilador para a linguagem Mini-Pascal, gerando Bytecode para a Java Virtual
Machine (JVM). As etapas sao:

e Etapa 1: Infraestrutura e AST: Definicdo da hierarquia de classes que representard
o cddigo em memoria (Arvore Sintatica Abstrata).

e Etapa 2: Analisador Léxico (Manual): Implementacao de autématos para quebrar
o texto em tokens.

e Etapa 3: Analisador Sintatico (Manual): Implementacdo de um parser descen-
dente recursivo.

e Etapa 4: Ferramentas (ANTLRA4): Substituicio dos analisadores manuais por
geradores profissionais.

e Etapa 5: Semantica (Escopo): Validagao de varidveis declaradas e resolucao de
nomes.

e Etapa 6: Semaéntica (Tipos): Verificacio de compatibilidade de tipos (ex: néao
somar booleano com inteiro).

e Etapa 7: Geragao de Cddigo: Traducao da AST validada para instrugoes da JVM
usando a biblioteca ASM.

A Importante

O projeto é incremental. Cada etapa depende do sucesso da anterior. O actimulo
de atrasos pode inviabilizar a entrega final.

5 Conexoes Interdisciplinares

Compiladores é a disciplina onde "tudo se encaixa'.

Compiladores 2 Aléssio Junior - alessiojr.com



5.1 Estruturas de Dados (AED2)

5.1 Estruturas de Dados (AEDZ2)

O compilador é, essencialmente, um grande transformador de estruturas de dados.

o Arvores: A estrutura central do compilador é a AST (Abstract Syntax Tree).
Algoritmos de caminhamento em arvore (Depth-First Search, Post-Order Traversal)
sao usados extensivamente para analise semantica e geragao de codigo.

e Tabelas Hash: Fundamental para a Tabela de Simbolos, garantindo acesso O(1)
para buscar variaveis pelo nome.

e Grafos:
e Grafos de Fluxo de Controle (CFG): Usados para otimizagao e analise de cam-

inhos de execucao.

e Grafos de Interferéncia: Usados no algoritmo de Coloracao de Grafos para alo-
cagao de registradores.

5.2 Linguagens de Programacao

Para construir um compilador, vocé precisa entender profundamente como as linguagens
funcionam "por baixo do capo”.

e Escopo e Visibilidade: Como funciona o sombreamento de varidveis? ({ int x; {
int x; } }). O compilador precisa gerenciar uma pilha de tabelas de simbolos para
resolver isso corretamente.

e Sistemas de Tipos: A diferenga entre tipagem estética (verificada pelo compilador)
e dindmica. Polimorfismo e coercao.

¢ Runtime Environment: Como a meméria é organizada (Stack vs Heap) para suportar
chamadas de funcao e alocacao dinamica.

5.3 Linguagens Formais e Autématos

A teoria da computacdo fornece as bases matematicas para que nossos algoritmos sejam
corretos e eficientes.

o Expressoes Regulares e Automatos Finitos: Sao a base para a construcao de
Scanners eficientes. Sem eles, escreveriamos "spaghetti code" cheio de if/else para ler
caracteres.

e Gramaticas Livres de Contexto (GLC): Essenciais para especificar a sintaxe es-
truturada (aninhamento de blocos e expressoes). O parser é, na verdade, um Autémato
de Pilha deterministico.

Compiladores 3 Aléssio Junior - alessiojr.com



6 Ferramentas de Trabalho

Neste curso, a familiaridade com as ferramentas é crucial:

e Git: Todo o trabalho sera versionado. Commits atomicos e mensagens claras sao
esperados.

e ANTLRA4: Uma ferramenta poderosa que, a partir de uma gramatica (.g4), gera todo
o codigo Java para ler e validar o codigo fonte.

e IntelliJ/VS Code: Use uma IDE robusta. O debug serd seu melhor amigo.

7 Referéncias

e Aho, A. V., Lam, M. S.; Sethi, R., & Ullman, J. D. (2006). Compilers: Principles,

Techniques, and Tools.

e Cooper, K., & Torczon, L. (2011). Engineering a Compiler.

Compiladores 4 Aléssio Junior - alessiojr.com



	Sobre a disciplina
	Objetivos da disciplina

	Metodologia e avaliação
	Estrutura de avaliação

	O Projeto de Compilador
	Bibliografia e recursos
	Ferramentas


