Compiladores
Capitulo da Aula 2: Introducao aos Compiladores

Prof. Aléssio Miranda Junior
alessio@cefetmg.br
CEFET-MG - Campus Timoéteo

Fevereiro de 2026

1 Objetivos

Este capitulo aprofunda os conceitos fundamentais sobre compiladores, estabelecendo a
base tedrica para o restante da disciplina. Os objetivos principais sao:

e Definir formalmente o conceito de compilador e seus componentes.

e Diferenciar detalhadamente os modelos de execugao: Compilagao Pura (AOT), Inter-
pretagdo Pura e Hibridos (JIT).

e Compreender a estrutura bésica de T-Diagrams (Diagramas de Lapide) como ferra-
menta de modelagem.

e Visualizar o ciclo de vida da traducao de codigo através do modelo Analise-Sintese.

2 0O que é um Compilador?

Em sua esséncia, um compilador é um tradutor. Diferente de um programa comum que
processa dados para produzir resultados, um compilador processa cidigo para produzir
codigo equivalente.

2.1 Definicao Formal

Formalmente, definimos um compilador C' como uma fungdo que mapeia um programa
Ps escrito em uma linguagem fonte Lg para um programa semanticamente equivalente
Pr em uma linguagem alvo L.

CZLS—>LT

A condicao de equivaléncia seméantica garante que, para qualquer entrada valida, am-
bos os programas produzam o mesmo resultado:

Vinput € Inputs : Exec(Ps,input) = Exec(Pr,input)

Compiladores 1 Aléssio Junior - alessiojr.com



2.2 Por que compilar?

A propriedade fundamental é a preservagao da semantica. O processo de compi-
lacao pode alterar a estrutura do codigo, otimizar loops e remover variaveis, mas nunca
deve alterar o comportamento observavel do programa original.

2.2 Por que compilar?

Existem trés motivagoes principais para nao programarmos diretamente em linguagem de
maquina:

1 Produtividade: Linguagens de alto nivel (Java, Python, C++) oferecem abstragoes
que tornam o desenvolvimento mais rapido e menos propenso a erros.

2 Portabilidade: O mesmo codigo fonte pode ser compilado para arquiteturas de hard-
ware completamente diferentes (x86, ARM, RISC-V), abstraindo os detalhes do set de
instrucoes.

3 Otimizacao: Compiladores modernos realizam transformagoes matematicas complexas
(como alocagao de registradores por coloragao de grafos) que seriam invidveis de serem
feitas manualmente em grandes projetos.

3 Modelos de Execucao

A forma como um programa escrito em linguagem de alto nivel chega a execug¢ado varia
significativamente entre linguagens. Identificamos trés modelos principais:

3.1 A) Compiladores Puros (Ahead-of-Time - AOT)

Neste modelo, o codigo fonte é totalmente traduzido para linguagem de méaquina antes
de qualquer execucao ocorrer.

e Exemplos: C, C++, Rust, Go, Haskell.

e Fluxo Tipico:

Fonte (.c) -> Compilador -> Objeto (.0) -> Linker -> Executéavel

e Vantagens: Maxima performance, pois o compilador tem tempo ilimitado para otimizar
o codigo antes da execucao; deteccao antecipada de erros de tipos e sintaxe.

e Desvantagens: Ciclo de desenvolvimento (edit-compile-run) mais lento; o executével
gerado é preso a plataforma (sistema operacional e arquitetura) especifica.

Compiladores 2 Aléssio Junior - alessiojr.com



3.2 B) Intérpretes Puros

3.2 B) Intérpretes Puros

Nao existe uma fase de traducao para codigo de maquina persistente. Uma Maquina
Virtual ou Intérprete 1& o cddigo fonte (ou uma representacao interna leve como AST) e
executa as agoes em tempo real.

e Exemplos: Bash, versoes antigas de PHP, Python (conceitualmente).

e Fluxo Tipico:

Fonte (.py) -> Intérprete (L& instrugdo -> Executa instrugdo)

e Vantagens: Flexibilidade extrema (c6digo pode ser gerado e executado dinamicamente
com ‘eval‘); portabilidade total, bastando ter o intérprete instalado; ciclo de desenvolvi-
mento imediato.

e Desvantagens: Performance significativamente menor (frequentemente 10x a 100x
mais lento que cédigo compilado) devido ao overhead de decodificar e despachar in-
strucoes repetidamente.

3.3 C) Hibridos (Bytecode e JIT)

Este é o modelo dominante em linguagens modernas corporativas. O codigo fonte é
compilado para uma Linguagem Intermediaria (IL) padrao e portétil (blo Bytecode),
que é entao executada por uma Maquina Virtual eficiente.

e Exemplos: Java (JVM), C# (NET CLR), JavaScript (V8/SpiderMonkey).
e Fluxo Tipico:

1 Tempo de Compilagcio: Fonte (.java) — Bytecode (.class)
2 Tempo de Execucao: Bytecode — JUM — Codigo de Maquina

e Just-In-Time (JIT) Compiler: A inovagao crucial deste modelo. A VM monitora
a execugdo. Se um método é executado frequentemente (é "hot"), o JIT o compila
para codigo de maquina nativo em tempo de execucao, armazenando-o em cache. Isso
permite que linguagens como Java alcancem performance préxima a de C++-.

4 Diagramas de Lapide (T-Diagrams)

T-Diagrams sao uma notagao grafica fundamental para descrever compiladores e processos
de cross-compilation e bootstrapping. Um T-Diagram possui trés componentes dispostos
em forma de "T":

1 Topo Esquerdo (S): A linguagem Fonte (Source) que o compilador aceita.

2 Topo Direito (T): A linguagem Alvo (Target) que o compilador gera.

Compiladores 3 Aléssio Junior - alessiojr.com



3 Base (I): A linguagem de Implementagao na qual o compilador foi escrito e roda.

Isso se 1&é como: "Um compilador de S para T, escrito em I'. Essa notacao ajuda a
visualizar como construimos compiladores complexos. Por exemplo, o processo de Boot-
strapping descreve como o primeiro compilador de C foi escrito (provavelmente em As-
sembly) e como, subsequentemente, reescrevemos o compilador em C e usamos o binario
anterior para compilar o novo codigo fonte.

5 A Anatomia Simplificada de um Compilador

Para fins de estudo e projeto, dividimos o compilador em duas grandes fases, conhecida
como modelo Analise-Sintese.

5.1 Front-End (Anélise)

O foco desta fase é compreender o programa fonte e validar sua correcao.

1 Analise Léxica: "As palavras existem?" O fluxo de caracteres é convertido em tokens
(palavras validas da linguagem, como ‘if*, ‘while‘, identificadores).

2 Analise Sintatica: "A frase faz sentido?" Os tokens sao organizados em uma estrutura
hierarquica (Arvore Sintatica ou AST) conforme a gramética da linguagem.

3 Analise Semantica: "O significado é valido?" Verificagoes de contexto, como tipagem
(ndo somar inteiro com string) e escopo de variaveis.

Saida: Uma Representacao Intermediéria (IR) ou AST decorada.

5.2 Back-End (Sintese)

O foco desta fase é gerar o codigo para a maquina alvo da forma mais eficiente possivel.

1 Geragao de Cdédigo Intermediario: Criacdo de uma versao genérica do programa,
independente da méaquina alvo.

2 Otimizagao: Transformagdes para tornar o c6digo mais rapido ou menor (eliminacao
de cédigo morto, unrolling de loops).

3 Geracao de Cdbdigo Alvo: Emissao do codigo final, seja Assembly ou binario de
méquina (x86, ARM, JVM Bytecode).
6 Referéncias

e Aho, A. V., Lam, M. S.; Sethi, R., & Ullman, J. D. (2006). Compilers: Principles,
Techniques, and Tools. (Caps 1.1, 1.2)

e Cooper, K., & Torczon, L. (2011). Engineering a Compiler. (Cap 1)

Compiladores 4 Aléssio Junior - alessiojr.com



	Objetivos
	O que é um Compilador?
	Definição Formal
	Por que compilar?

	Modelos de Execução
	A) Compiladores Puros (Ahead-of-Time - AOT)
	B) Intérpretes Puros
	C) Híbridos (Bytecode e JIT)

	Diagramas de Lápide (T-Diagrams)
	A Anatomia Simplificada de um Compilador
	Front-End (Análise)
	Back-End (Síntese)

	Referências

