
Compiladores
Capítulo da Aula 2: Introdução aos Compiladores

Prof. Aléssio Miranda Júnior
alessio@cefetmg.br

CEFET-MG - Campus Timóteo

Fevereiro de 2026

1 Objetivos
Este capítulo aprofunda os conceitos fundamentais sobre compiladores, estabelecendo a
base teórica para o restante da disciplina. Os objetivos principais são:

• Definir formalmente o conceito de compilador e seus componentes.

• Diferenciar detalhadamente os modelos de execução: Compilação Pura (AOT), Inter-
pretação Pura e Híbridos (JIT).

• Compreender a estrutura básica de T-Diagrams (Diagramas de Lápide) como ferra-
menta de modelagem.

• Visualizar o ciclo de vida da tradução de código através do modelo Análise-Síntese.

2 O que é um Compilador?
Em sua essência, um compilador é um tradutor. Diferente de um programa comum que
processa dados para produzir resultados, um compilador processa código para produzir
código equivalente.

2.1 Definição Formal
Formalmente, definimos um compilador C como uma função que mapeia um programa
PS escrito em uma linguagem fonte LS para um programa semanticamente equivalente
PT em uma linguagem alvo LT .

C : LS → LT

A condição de equivalência semântica garante que, para qualquer entrada válida, am-
bos os programas produzam o mesmo resultado:

∀input ∈ Inputs : Exec(PS, input) ≡ Exec(PT , input)

Compiladores 1 Aléssio Júnior - alessiojr.com



2.2 Por que compilar?

A propriedade fundamental é a preservação da semântica. O processo de compi-
lação pode alterar a estrutura do código, otimizar loops e remover variáveis, mas nunca
deve alterar o comportamento observável do programa original.

2.2 Por que compilar?
Existem três motivações principais para não programarmos diretamente em linguagem de
máquina:

1 Produtividade: Linguagens de alto nível (Java, Python, C++) oferecem abstrações
que tornam o desenvolvimento mais rápido e menos propenso a erros.

2 Portabilidade: O mesmo código fonte pode ser compilado para arquiteturas de hard-
ware completamente diferentes (x86, ARM, RISC-V), abstraindo os detalhes do set de
instruções.

3 Otimização: Compiladores modernos realizam transformações matemáticas complexas
(como alocação de registradores por coloração de grafos) que seriam inviáveis de serem
feitas manualmente em grandes projetos.

3 Modelos de Execução
A forma como um programa escrito em linguagem de alto nível chega à execução varia
significativamente entre linguagens. Identificamos três modelos principais:

3.1 A) Compiladores Puros (Ahead-of-Time - AOT)
Neste modelo, o código fonte é totalmente traduzido para linguagem de máquina antes
de qualquer execução ocorrer.

• Exemplos: C, C++, Rust, Go, Haskell.

• Fluxo Típico:

Fonte (.c) -> Compilador -> Objeto (.o) -> Linker -> Executável

• Vantagens: Máxima performance, pois o compilador tem tempo ilimitado para otimizar
o código antes da execução; detecção antecipada de erros de tipos e sintaxe.

• Desvantagens: Ciclo de desenvolvimento (edit-compile-run) mais lento; o executável
gerado é preso à plataforma (sistema operacional e arquitetura) específica.

Compiladores 2 Aléssio Júnior - alessiojr.com



3.2 B) Intérpretes Puros

3.2 B) Intérpretes Puros
Não existe uma fase de tradução para código de máquina persistente. Uma Máquina
Virtual ou Intérprete lê o código fonte (ou uma representação interna leve como AST) e
executa as ações em tempo real.

• Exemplos: Bash, versões antigas de PHP, Python (conceitualmente).

• Fluxo Típico:

Fonte (.py) -> Intérprete (Lê instrução -> Executa instrução)

• Vantagens: Flexibilidade extrema (código pode ser gerado e executado dinamicamente
com ‘eval‘); portabilidade total, bastando ter o intérprete instalado; ciclo de desenvolvi-
mento imediato.

• Desvantagens: Performance significativamente menor (frequentemente 10x a 100x
mais lento que código compilado) devido ao overhead de decodificar e despachar in-
struções repetidamente.

3.3 C) Híbridos (Bytecode e JIT)
Este é o modelo dominante em linguagens modernas corporativas. O código fonte é
compilado para uma Linguagem Intermediária (IL) padrão e portátil (blo Bytecode),
que é então executada por uma Máquina Virtual eficiente.

• Exemplos: Java (JVM), C# (.NET CLR), JavaScript (V8/SpiderMonkey).

• Fluxo Típico:

1 Tempo de Compilação: Fonte (.java) → Bytecode (.class)

2 Tempo de Execução: Bytecode → JVM → Código de Máquina

• Just-In-Time (JIT) Compiler: A inovação crucial deste modelo. A VM monitora
a execução. Se um método é executado frequentemente (é "hot"), o JIT o compila
para código de máquina nativo em tempo de execução, armazenando-o em cache. Isso
permite que linguagens como Java alcancem performance próxima à de C++.

4 Diagramas de Lápide (T-Diagrams)
T-Diagrams são uma notação gráfica fundamental para descrever compiladores e processos
de cross-compilation e bootstrapping. Um T-Diagram possui três componentes dispostos
em forma de "T":

1 Topo Esquerdo (S): A linguagem Fonte (Source) que o compilador aceita.

2 Topo Direito (T): A linguagem Alvo (Target) que o compilador gera.

Compiladores 3 Aléssio Júnior - alessiojr.com



3 Base (I): A linguagem de Implementação na qual o compilador foi escrito e roda.

Isso se lê como: "Um compilador de S para T, escrito em I". Essa notação ajuda a
visualizar como construímos compiladores complexos. Por exemplo, o processo de Boot-
strapping descreve como o primeiro compilador de C foi escrito (provavelmente em As-
sembly) e como, subsequentemente, reescrevemos o compilador em C e usamos o binário
anterior para compilar o novo código fonte.

5 A Anatomia Simplificada de um Compilador
Para fins de estudo e projeto, dividimos o compilador em duas grandes fases, conhecida
como modelo Análise-Síntese.

5.1 Front-End (Análise)
O foco desta fase é compreender o programa fonte e validar sua correção.

1 Análise Léxica: "As palavras existem?" O fluxo de caracteres é convertido em tokens
(palavras válidas da linguagem, como ‘if‘, ‘while‘, identificadores).

2 Análise Sintática: "A frase faz sentido?" Os tokens são organizados em uma estrutura
hierárquica (Árvore Sintática ou AST) conforme a gramática da linguagem.

3 Análise Semântica: "O significado é válido?" Verificações de contexto, como tipagem
(não somar inteiro com string) e escopo de variáveis.

Saída: Uma Representação Intermediária (IR) ou AST decorada.

5.2 Back-End (Síntese)
O foco desta fase é gerar o código para a máquina alvo da forma mais eficiente possível.

1 Geração de Código Intermediário: Criação de uma versão genérica do programa,
independente da máquina alvo.

2 Otimização: Transformações para tornar o código mais rápido ou menor (eliminação
de código morto, unrolling de loops).

3 Geração de Código Alvo: Emissão do código final, seja Assembly ou binário de
máquina (x86, ARM, JVM Bytecode).

6 Referências
• Aho, A. V., Lam, M. S., Sethi, R., & Ullman, J. D. (2006). Compilers: Principles,

Techniques, and Tools. (Caps 1.1, 1.2)

• Cooper, K., & Torczon, L. (2011). Engineering a Compiler. (Cap 1)

Compiladores 4 Aléssio Júnior - alessiojr.com


	Objetivos
	O que é um Compilador?
	Definição Formal
	Por que compilar?

	Modelos de Execução
	A) Compiladores Puros (Ahead-of-Time - AOT)
	B) Intérpretes Puros
	C) Híbridos (Bytecode e JIT)

	Diagramas de Lápide (T-Diagrams)
	A Anatomia Simplificada de um Compilador
	Front-End (Análise)
	Back-End (Síntese)

	Referências

