Compiladores

Aula 2: Introducao aos Compiladores

Prof. Aléssio Miranda Junior
alessio@cefetmg.br

CEFET-MG - Campus Timoteo
Dep. Engenharia de Computagio

Fevereiro de 2026

Prof. Aléssio Miranda Jinior - alessio@cefetmg.br CEFET-MG - Campus Timéteo



Sumario

© Objetivos
e Compiladores vs Interpretes
© Por que estudar?

@ Referencias

Prof. Aléssio Miranda Jinior - alessio@cefetmg.br CEFET-MG - Campus Timéteo



Objetivos da Aula

Definir formalmente o conceito de compilador.

® Diferenciar modelos de execucao: AOT, Interpretes e JIT.

Compreender a estrutura de T-Diagrams.

Visualizar a anatomia de um compilador (Front-end vs Back-end).

Prof. Aléssio Miranda Jinior - alessio@cefetmg.br CEFET-MG - Campus Timéteo



Definicao Formal

Um compilador C e uma funcao que mapeia um programa Ps em linguagem fonte para um
programa equivalente Pt em linguagem alvo:

C:L5—>LT

Preservacao Semantica

Vinput : Exec(Ps, input) = Exec(Pr, input)

O comportamento deve ser identico, mesmo que a estrutura interna mude.

Prof. Aléssio Miranda Jinior - alessio@cefetmg.br CEFET-MG - Campus Timéteo



1. Compiladores Puros (AOT)

Ahead-of-Time: Traducao completa antes da execucao.

Fonte (.c) — Compilador — Binario (.exe)

e Exemplos: C, C++, Rust, Go.
® Pros: Maxima performance, otimizacao agressiva.

® Contras: Ciclo lento, binario preso a plataforma.

Prof. Aléssio Miranda Jinior - alessio@cefetmg.br CEFET-MG - Campus Timéteo



2. Interpretes Puros

Execucao direta do codigo fonte por uma Maquina Virtual, instrucao a instrucao.

Fonte (.py) — Interprete (Le — Executa)

® Exemplos: Bash, Python (conceitualmente), PHP antigo.
® Pros: Flexibilidade, portabilidade total.

¢ Contras: Performance baixa (overhead de decodificacao).

Prof. Aléssio Miranda Jinior - alessio@cefetmg.br CEFET-MG - Campus Timéteo



3. Hibridos (Bytecode + JIT)

Traducao para linguagem intermediaria (Bytecode) + Execucao por VM eficiente.

Java — Bytecode (.class) — JVM — Codigo Nativo

Just-In-Time (JIT) Compilation

A VM detecta funcoes executadas frequentemente (" hot spots”) e as compila para codigo de
maquina durante a execucao.

® Une portabilidade do bytecode com performance do codigo nativo.
® Exemplos: Java, C#, JavaScript (V8).

Prof. Aléssio Miranda Jinior - alessio@cefetmg.br CEFET-MG - Campus Timéteo



Diagramas de Lapide (T-Diagrams)

Ferramenta para descrever processos de compilacao e bootstrapping.

Formatoem "T":

® Topo Esq (S): Linguagem Fonte. S 5 T
® Topo Dir (T): Linguagem Alvo. |
I

¢ Base (l): Linguagem de Implementacao.

Exemplo: Um compilador de Java para Bytecode escrito em Java.

Prof. Aléssio Miranda Jinior - alessio@cefetmg.br CEFET-MG - Campus Timéteo



Modelo Analise-Sintese

Front-End (Analise)

. Back-End (Sintese)
1. Lexico: Tokens (palavras).

. . 1. Geracao de Codigo IR: Codigo generico.
2. Sintatico: Arvore (estrutura). 2. Otimizacao: +Rapido, -Tamanho

3. Semantico: Tipos e Escopo. o
3. Cod. Alvo: Assembly/Binario final.

Saida: Representacao Intermediaria (IR/AST).

Prof. Aléssio Miranda Jinior - alessio@cefetmg.br CEFET-MG - Campus Timéteo



Referencias

® Aho, et al. Compilers: Principles, Techniques, and Tools (Livro do Dragao).

® Cooper & Torczon. Engineering a Compiler.

Prof. Aléssio Miranda Jiinior - alessio@cefetmg.br CEFET-MG - Campus Timéteo



Obrigado!

Email: alessio@cefetmg.br

Prof. Aléssio Miranda Jiinior - alessio@cefetmg.br CEFET-MG - Campus Timéteo



	Objetivos
	Compiladores vs Interpretes
	Por que estudar?
	Referencias

