
Compiladores
Aula 2: Introducao aos Compiladores

Prof. Aléssio Miranda Júnior
alessio@cefetmg.br

CEFET-MG - Campus Timoteo
Dep. Engenharia de Computação

Fevereiro de 2026

1 / 9 Prof. Aléssio Miranda Júnior - alessio@cefetmg.br CEFET-MG - Campus Timóteo



Sumário

1 Objetivos

2 Compiladores vs Interpretes

3 Por que estudar?

4 Referencias

2 / 9 Prof. Aléssio Miranda Júnior - alessio@cefetmg.br CEFET-MG - Campus Timóteo



Objetivos da Aula

• Definir formalmente o conceito de compilador.

• Diferenciar modelos de execucao: AOT, Interpretes e JIT.

• Compreender a estrutura de T-Diagrams.

• Visualizar a anatomia de um compilador (Front-end vs Back-end).

3 / 9 Prof. Aléssio Miranda Júnior - alessio@cefetmg.br CEFET-MG - Campus Timóteo



Definicao Formal

Um compilador C e uma funcao que mapeia um programa PS em linguagem fonte para um
programa equivalente PT em linguagem alvo:

C : LS → LT

Preservacao Semantica

∀input : Exec(PS , input) ≡ Exec(PT , input)

O comportamento deve ser identico, mesmo que a estrutura interna mude.

4 / 9 Prof. Aléssio Miranda Júnior - alessio@cefetmg.br CEFET-MG - Campus Timóteo



1. Compiladores Puros (AOT)

Ahead-of-Time: Traducao completa antes da execucao.

Fonte (.c) → Compilador → Binario (.exe)

• Exemplos: C, C++, Rust, Go.

• Pros: Maxima performance, otimizacao agressiva.

• Contras: Ciclo lento, binario preso a plataforma.

5 / 9 Prof. Aléssio Miranda Júnior - alessio@cefetmg.br CEFET-MG - Campus Timóteo



2. Interpretes Puros

Execucao direta do codigo fonte por uma Maquina Virtual, instrucao a instrucao.

Fonte (.py) → Interprete (Le → Executa)

• Exemplos: Bash, Python (conceitualmente), PHP antigo.

• Pros: Flexibilidade, portabilidade total.

• Contras: Performance baixa (overhead de decodificacao).

6 / 9 Prof. Aléssio Miranda Júnior - alessio@cefetmg.br CEFET-MG - Campus Timóteo



3. Hibridos (Bytecode + JIT)

Traducao para linguagem intermediaria (Bytecode) + Execucao por VM eficiente.

Java → Bytecode (.class) → JVM → Codigo Nativo

Just-In-Time (JIT) Compilation

A VM detecta funcoes executadas frequentemente (”hot spots”) e as compila para codigo de
maquina durante a execucao.

• Une portabilidade do bytecode com performance do codigo nativo.

• Exemplos: Java, C#, JavaScript (V8).

7 / 9 Prof. Aléssio Miranda Júnior - alessio@cefetmg.br CEFET-MG - Campus Timóteo



Diagramas de Lapide (T-Diagrams)

Ferramenta para descrever processos de compilacao e bootstrapping.

Formato em ”T”:

• Topo Esq (S): Linguagem Fonte.

• Topo Dir (T): Linguagem Alvo.

• Base (I): Linguagem de Implementacao.

S → T

|

I

Exemplo: Um compilador de Java para Bytecode escrito em Java.

8 / 9 Prof. Aléssio Miranda Júnior - alessio@cefetmg.br CEFET-MG - Campus Timóteo



Modelo Analise-Sintese

Front-End (Analise)

1. Lexico: Tokens (palavras).

2. Sintatico: Arvore (estrutura).

3. Semantico: Tipos e Escopo.

Saida: Representacao Intermediaria (IR/AST).

Back-End (Sintese)

1. Geracao de Codigo IR: Codigo generico.

2. Otimizacao: +Rapido, -Tamanho.

3. Cod. Alvo: Assembly/Binario final.

9 / 9 Prof. Aléssio Miranda Júnior - alessio@cefetmg.br CEFET-MG - Campus Timóteo



Referencias

• Aho, et al. Compilers: Principles, Techniques, and Tools (Livro do Dragao).

• Cooper & Torczon. Engineering a Compiler.

10 / 9 Prof. Aléssio Miranda Júnior - alessio@cefetmg.br CEFET-MG - Campus Timóteo



Duvidas?

Obrigado!

Email: alessio@cefetmg.br

11 / 9 Prof. Aléssio Miranda Júnior - alessio@cefetmg.br CEFET-MG - Campus Timóteo


	Objetivos
	Compiladores vs Interpretes
	Por que estudar?
	Referencias

